A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging.

نویسندگان

  • Cheng Guan Koay
  • Lin-Ching Chang
  • John D Carew
  • Carlo Pierpaoli
  • Peter J Basser
چکیده

A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and constrained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are evaluated with Monte Carlo simulations and compared with the commonly used Levenberg-Marquardt method. The proposed methods have a lower percent of relative error in estimating the trace and lower reduced chi2 value than those of the Levenberg-Marquardt method. These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (<or=5). A new experimental design is, therefore, proposed to properly account for the directional dependence in diffusion weighted signal variance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation of Kurtosis and Diffusion Tensors in Diffusional Kurtosis Imaging

Diffusion of water molecules in biological tissues is conventionally quantified via diffusion tensor imaging (DTI) [1]. DTI enables a Gaussian approximation to the probability distribution governing the random displacement of water molecules. In some circumstances of great interest, however, the displacement probability distribution can deviate considerably from a Gaussian form. Diffusional kur...

متن کامل

The Asymptotic Behavior of the Nonlinear Estimators of the Diffusion Tensor and Tensor-Derived Quantities with Implications for Group Analysis

Diffusion tensor imaging (DTI) is a quantitative magnetic resonance imaging (MRI) method that is used to study the microstructural properties of white matter in the brain. Tensor-derived quantities, such as the trace and fractional anisotropy (FA), are important for characterizing the normal, diseased, and developing brain. Consequently, determining the statistical properties of the diffusion t...

متن کامل

Least Squares Approaches to Diffusion Tensor Estimation

Diffusion tensor imaging (DTI) (Basser et al., 1994b ) can be viewed as a fl exible but coherent data-analytic “pipeline” ranging from signal generation and detection to diffusion tensor estimation (Basser et al., 1994a ), tractography (Conturo et al., 1999 ; Mori et al., 1999 ), and beyond. In this chapter, we will explore a particular segment of this pipeline — diffusion tensor estimation. Th...

متن کامل

A New Robust Algorithm for Diffusion Tensor Evaluation

Introduction The diffusion tensor imaging toolbox exploits various diffusion maps based on scalar metrics such as mean diffusivity, fractional anisotropy (FA) and other rotational invariants. The quality of the maps relies on the accuracy of the diffusion tensor estimation from the raw experimental data [1]. In turn, estimation accuracy is influenced by the efficiency of the applied algorithms....

متن کامل

Propagation Framework for Diffusion Tensor Imaging via Diffusion Tensor Error Propagation Framework for Diffusion Tensor Imaging via Diffusion Tensor Representations

This preprint is made available because the published work cited below had several infelicities due to production error, i.e., awkward layout of equations and font styles. The conversion from the Words document here to IEEE TMI format was a mess. Abstract An analytical framework of error propagation for diffusion tensor imaging (DTI) is presented. Using this framework, any uncertainty of intere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 182 1  شماره 

صفحات  -

تاریخ انتشار 2006